

Influence of TiO₂ Physico-Chemical **Characteristics on Photocatalytic** *E. coli* Inactivation

D. Gumy^a, R. Hajdu^a, S. Giraldo^{a,d}, C. Pulgarin^a

C. Morais^b, P. Bowen^b

J. Kiwi^c

a) LBE (ENAC-ISTE), b) LPT (STI-IM), c) LPI (SB-ISIC), EPFL, Lausanne1015, Switzerland,d) Catalysis Res. Center, Ind. University of Santander, Bucaramanga, Colombia

Context – Objectives

1) TiO₂ characterization

2) E. coli inactivation with suspended TiO₂

3) E. coli inactivation with supported TiO₂

Conclusion

SolarSafeWater Simposio

19th October 2005

The rate of formation of the oxidative surface species and the interaction between TiO₂ and every states and/or bacteria are function of :

- particle size

- To charaggenizzeds & commercial TiO₂ powders
- To relate these characteristics with *E. coli* inactivation
 - Crystalline phase
 - Isoelectric point (IEP)
 - other parameters

- Crystalline phase (Anatase, Rutile)
 - X-ray diffraction measurements (XRD)
- **BET** (Specific Surface Area)

Gas adsorption measurements

• TiO₂ particle size

Transmission electron microscopy (TEM)

• TiO₂ aggregate size

Electroacoustic spectroscopy

• Isoelectric Point (IEP) - Zeta potential Electroacoustic spectroscopy

C. Morais, P. Bowen, LTP, STI

The electroacoustic procedure measures the dynamic (or electrophoretic) mobility μ_d (O'Brien et al., *Colloid. Interface. Sci*, 1995, 173, 406-418.)

 \rightarrow

 μ_d acoustic attenuation spectroscopy

(O'Brien, R. W. J. Fluid mech., 1988, 190, 71-85.)

1) Zeta potential & IEP

 \rightarrow 2) Aggregate size distribution

 $pH < IEP \rightarrow TiO_2$ surface : positively charged (TiOH₂⁺)

 $pH = IEP \rightarrow TiO_2$ surface : neutral

 $pH > IEP \rightarrow TiO_2$ surface: negatively charged (TiO⁻)

SolarSafeWater Simposio

19th October 2005

TiO₂ characteristics

Type of TiO₂	Crystalline	BET	Particule	Aggregate	IEP
	phase	(m²/g)	size (nm)	radius (nm)	
Degussa P25	AnaRutile	56	25-35	370	7.0
Degussa P25 TN90	AnaRutile	90	<100	14000	7.0
Mil. PC10	Anatase	10	70	1000	5.7
Mil. PC50	Anatase	50	20-30	8200	6.8
Mil. PC500	Anatase	335	5-10	1400	6.2
Mil. S5-300A	Anatase	280	30-60	1500	7.0
Huntsmann AHR	Anatase	11	150	6000	<3
Fluka	Anatase	9	700	40000	3.5
Tayca JA1	Anatase	9	180	9200	<3
Tayca TKS201	Anatase	214	6	130	7.5
Tayca TKS203	Anatase	241	6	200	<3
Tayca TKP101	Anatase	300	6	1850	4.7
Tayca TKP103	Anatase	280	6	350	<3

- 1-2 μm diameter (~ same as TiO₂ aggregate size)
- Outer membrane is negatively charged between pH 3 and 9

GRAM –

Outer membrane (6 -18 nm)

50% lipopolysaccharides, 35% phospholipids, 15% lipoproteins

Mechanical protection, influence permeability of moderate and large size molecules, etc.

Cytoplasmic membrane (7.5 nm) phospholipids bi-layer

Selective permeability, maintaining osmotic equilibrium, electron-transport machinery, etc.

E. coli (2)

1. Natural generation in the cell of $O_2 \sim$ and H_2O_2 during respiration

Protective mechanism for all aerobic life form:

- Superoxyde dismutase (SOD) enzyme (to dismutate O_2^{\bullet} to H_2O_2 and O_2)
- Catalase enzyme (to convert H_2O_2 to H_2O and O_2)

2. H_2O_2 can react with Fe in the cell and generated intern OH[•] by the Fenton reaction

 $Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^{\bullet} + OH^{\bullet}$

3. Different mechanisms of reparation (DNA/RNA, etc.)

4. No mechanism to protect bacteria against external OH[•] attack

5. There are several evidences of membrane and cell wall destruction and of internal materials leaching No evidence of oxygen reactive species diffusion inside the cell
(Sunada et al., J. Photochem. Photobiol., 156 (2003) - Manness et al. J. Appl. Environ. Microbiol., 65 (1999))

Photocatalytic Experiments

- Suntest Lamp with UV B_C filter (<290 nm)
- I = 70, 100 & 140 mW/cm²
- 4h illumination
- 4 reactors in parallel

- 50 ml Pyrex Glass Reactor
- [*E. coli*] = $\sim 7 \ 10^6 \text{ CFU/ml}$

Stationary growth phase (15 h, 37°C, LB)

- Saline solution: NaCl 8 g/l , KCl 0.2 g/l
- pH adjusted to 4.5, 6 and 8.5
- 3 or 4 x repetition

E. coli abatement

 $[E. coli]_{ini} = 7 \ 10^6 \text{ CFU/ml}$; $V_{ill} = 50 \text{ ml}$, $TiO_2 = 0.2 \text{ g/l}$; $I = 70 \text{ mW/cm}^2$; pH 6

SolarSafeWater Simposio

19th October 2005

BET < 200 m²/g (except P25, aggregate size > 1 μm)

• Lag period for TiO₂ with acidic IEP, probably due to an electrostatic repulsive effect

• No correlation between BET (or particle size) and *E. coli* inactivation

BET > 200 m^2/g

small aggregate size

- Apparently: repulsive effect for TiO₂ with acidic IEP
- No correlation between BET (or particle size) and E. coli inactivation

Study of the electrostatic attraction between E. coli and TiO₂

E. coli: Negatively charged between pH 3 & 9 (carboxylic and phosphate groups)

pH < IEP \rightarrow TiO₂ surface : positively charged (TiOH₂⁺)

TiO₂: $pH = IEP \rightarrow TiO_2$ surface : neutral

pH > IEP \rightarrow TiO₂ surface: negatively charged (TiO⁻)

\rightarrow Experiments at different pH

- No abatement under light irradiation at pH 6 & 8.5
- Small abatement at pH 4.5

 $[E. coli]_{ini} = 7 \ 10^6 \text{ CFU/ml}$; $V_{ill} = 50 \text{ ml}$, $TiO_2 = 0.0 \text{ g/l}$; $I = 70 \text{ mW/cm}^2$

Type of TiO ₂	Crystalline	BET	Particule	Aggregate	IEP
	phase	(m^{2}/g)	size (nm)	radius (nm)	
Tayca TKS201	Anatase	214	6	130	7.5
Tayca TKS203	Anatase	241	6	200	<3

Pairs of TiO₂ with different surface charge but similar surface properties

IEP = 7.5

Surface negatively charged for pH 8.5

and positively charged for pH 4.5 & 6.0

Surface negatively charged for the 3 pH

IEP <3

→ Electrostatic attraction seems to be a determinant factor for Tayca TKS

E. coli abatement : pH 8.5 ~ pH 6 ~ pH 4

→ Electrostatic attraction seems not to be a determinant factor with P25 ???
→ Direct observation with microscopic methods (optical, TEM, AFM)

- Determination of particles and clusters size up to the nanometer range (450'000x)
- 2. Interaction between P25 and *E. coli* At pH 6:
- **TiO₂:** TiOH₂⁺ on surface (P25: IEP = 7) 300-400 nm
- *E. coli*: charged (between pH 3 & 9) (carboxylic and phosphate groups)

 $\sim 1 \ \mu m$

→ Partial contact, a significant part of the TiO₂ particle remain in the solution outside the electrostatic field of *E. coli*

TiO₂ Supported

Ahlstrom paper NW 10

• SEM picture of NW10 (25x)

- Thin film reactor (5mm) with coated TiO₂
- Non-woven web (natural and synthetic fibers, 0.2 mm thick)
- TiO₂ P-25 and PC500 coated using an inorganic binder SiO_2 IEP < 2
- TiO₂ loading: 5.5, 10.0 and 13 g/m²
- High photoactivity for phenolic compounds degradation with the same experimental conditions (Gumy et al., *Sol. Energy*, 2005, in press)

SolarSafeWater Simposio

Reactor - Suntest

- Continuously recirculated: Flow = 150 ml/min

$$-I = 140 [mW/cm^2] (\sim 6\% UV)$$

Volume without support: - V_{total} = 200 ml ; V_{ill} = 100 ml

Volume with support: - V_{total} = 100 ml ; V_{ill} = 25 ml

$$-\mathcal{O}_{\text{int.}} = 40 \text{ mm}$$
; $\mathcal{O}_{\text{support}} = 30 \text{ mm}$

Paper NW10 – E. coli

Bacterial inactivation is not enhanced by fixed TiO₂ probably because there is not enough "contact" between bacteria and TiO₂

This could be due to the electrostatic repulsion between SiO₂-TiO₂ and the bacteria

Continuously recirculated reactor, $V_{total} = 100 \text{ ml}$; $V_{ill} = 25 \text{ ml}$, $S_{NW10} = 65 \text{ cm}^2$

- Correlation between IEP (therefore electrostatic attraction) and inactivation kinetics was observed
- No correlation between BET (and/or particle size) and inactivation kinetics was observed
- Mixed anatase/rutile P25 was the more active catalysts for bacterial inactivation
- TiO₂ coated on "paper" with silica binder do not enhanced the photoinactivation of *E. coli* (probably because of the presence of silica binder)

• Direct observation by microscopic technique to understand better the interaction between bacteria and TiO₂

Acknowledgments

Sonia Giraldo and Rita Hajdu

- OFES for its financial assistance (projects No 02.0030 and 02.0316 within the SOLWATER and AQUACAT contracts No ICA4-CT.2002-10001 and ICA3-CT-2002-10016 of the European Community)
- CTI/KTI TOP NANO 21 under Grant 5897.5 (Bern, Switzerland) and of COST D-19 under Grant No COO 2.0068
- EPFL-Colombia cooperation program

and You!